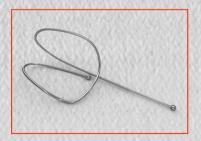


Some years ago... SEVERE COPD AND ASTHMA:

CONTRAINDICATION FOR BRONCHOSCOPY!?!?

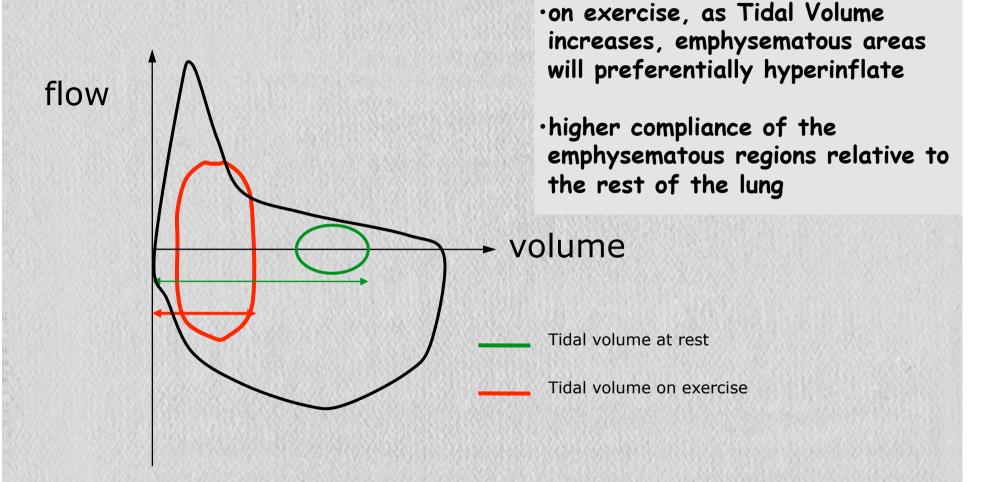
INTERVENTIONAL PULMONOLOGY NEW FRONTIERS FOR THERAPY (COPD)

VALVES

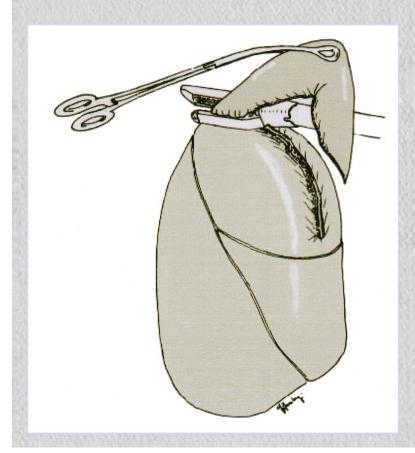

SEALANT

COILS

STEAM



Emphsema: Pathophysiological background


Hyperinflation: one the main factors determining dyspnea in emphysema

Hyperinflation increases on exercise (dynamic hyperinflation)
Inhaled bronchodilators: modest impact on hyperinflation

BILATERAL PNEUMECTOMY (VOLUME REDUCTION) FOR CHRONIC OBSTRUCTIVE PULMONARY DISEASES Cooper JD et al, J Thorac Cardiovasc Surg 1995; 109: 106-119

RESULTS OF 150 CONSECUTIVE BILATERAL LUNG VOLUME REDUCTION PROCEDURES IN PATIENTS WITH SEVERE EMPHYSEMA

Cooper JD, Patterson GA et al. J Thorac Cardiovasc Surg 1996; 112: 1319-30

Heterogeneous emphysema, Severe hyperinflation, FEV1 > 20-25% pred, No pulmonary hypertension

Reduction of dysphea Increase of FEV1.0 Improvement in exercise capacity Improvement in quality of life

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

MAY 22, 2003

VOL. 348 NO. 21

A Randomized Trial Comparing Lung-Volume–Reduction Surgery with Medical Therapy for Severe Emphysema

National Emphysema Treatment Trial Research Group*

- •1218 randomized patients: best medical therapy vs. surgical volume reduction.
- •LVRS increases exercise capacity in 15% of surgical treated patients vs. 3% of control group
- •No differences in terms of overall survival.
- •Better survival with LVRS in group of patients with predominant emphysema in upper lobes and low exercise capacity.
- •Patients with non-upper-lobe emphysema and high exercise capacity are poor candidate for LVRS for negligible functional gain and increased risk of mortality.

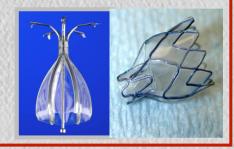
LUNG VOLUME REDUCTION SURGERY

Table 2. – Operative results after bilateral stapled lung volume reduction surgery

First author [Ref.]	Surgical approach	Patients n	Mortality %	Prolonged air leaks %	Hospital stay	FEV1 increase %
COOPER [25]	Sternotomy	150	4	46	13.5	51
MILLER [26]	Sternotomy	53	5.6	40	10–59	96
BINGISSER (14)	VATS-OS	20	0	35	15	42
Brenner [27]	VATS-OS	145	4.2		8.8	62
WISSER [28]	VATS-OS	15	13.3		12.3	60
KOTLOFF [15]	Sternotomy	80	4.2		22	40
	VATS-OS	40	2.5		17.3	37
Mc Kenna [22]	VATS-OS	79	2.5	47	10.0	57
DE PERROT [17]	Thoracotomy-OS	18	0	33	21	54
Ромрео [29]	VATS-ST	26	0	52	18.4	39
	VATS-OS	33	3.0	39	11.7	52
CICCONE [12]	Sternotomy	250	4.8	45.2	9#	57

FEV1: forced expiratory volume in one second; VATS: video-asssisted thoracoscopic surgery; OS: one-stage; ST: staged; Hospital stay data is expressed as mean, or *: median range.

BRONCHOSCOPIC LUNG VOLUME REDUCTION: WHY?


- To obtain the same results of surgery (?)
- To reduce risks
- To reduce costs
- To reduce hospital stay
- Effective for patients who do not meet the criteria for LVRS (e.g. lower lobe emphysema)
- Out-patient procedure
- Potentially reversible (?)

BRONCHOSCOPIC TREATMENT OF EMPHYSEMA

1. Bronchial blockers devices

Valves

- IBV
- Zephyr

2. Devices that works on lung parenchima

Sealants Coils Steam

One-way endobronchial valves

ZEPHYR valve

VENT:

Bronchial Valve for Emphysema PalliatioN Trial

ORIGINAL ARTICLE

N Engl J Med 2010; 363: 1233-1244

A Randomized Study of Endobronchial Valves for Advanced Emphysema

Frank C. Sciurba, M.D., Armin Ernst, M.D., Felix J.F. Herth, M.D., Charlie Strange, M.D., Gerard J. Criner, M.D., Charles H. Marquette, M.D., Ph.D., Kevin L. Kovitz, M.D., M.B.A., Richard P. Chiacchierini, Ph.D., Jonathan Goldin, M.D., Ph.D., and Geoffrey McLennan, M.D., Ph.D., for the VENT Study Research Group*

- Multi-center
- Prospective/Randomized
 - 2:1 treatment to control / non-blinded
- All subjects received optimal medical management prior to baseline
- Key Entry Criteria
 - Severe heterogeneous disease determined by HRCT, Pulmonary Function testing
 - Clinically Stable (i.e. no severe concurrent acute events)

VENT:

Effectiveness Results (6 months)

	Treatment n = 220 Mean ± SD	Control n = 101 Mean ± SD	Between- group difference from baseline	p value ¹
Co-Primary Endpoints				
% Change in FEV ₁	4.3% (1.4 to 7.2)	-2.5% (-5.4 to 0.4)	6.8	0.005
% Change in 6MWT	2.5% (0.2 to 1.8)	3.2% (-8.9 to 2.4)	5.8	0.002
Secondary Endpoints				
SGRQ	-2.8 (-4.7 to -1.0)	0.6 (-1.8 to 3.0)	-3.4	0.04
mMRC	-0.1 (-0.21 to 0.09)	0.2 (0.01 to 0.37)	-0.3	0.04

Sciurba et al. N Engl J Med 2010; 363: 1233-1244

VENT:

Effectiveness Results (6 months)

SUBGROUPE	Difference between EBV group and Control group			
High-heterogeneity FEV1.0 6MWT	10.7% (1.4 to 7.2) 12.4% (4.8 to 20.1)	<0.001 0.08		
Low-heterogeneity FEV1.0 6MWT	2.5% (3.1 to 8.2) -1.0 (-6.4 to 8.4)	0.64 0.84		
Complete fissure FEV1.0 6MWT Incomplete fissure	16.2 (8.8 to 23.8) 7.7 (-1.8 to 17.2)	<0.001 0.31		
FEV1.0 6MWT	2.0 (-3.9 to 7.9) 5.3 (-1.5 to 12.2)	0.41 0.20		

Sciurba et al. N Engl J Med 2010; 363: 1233-1244

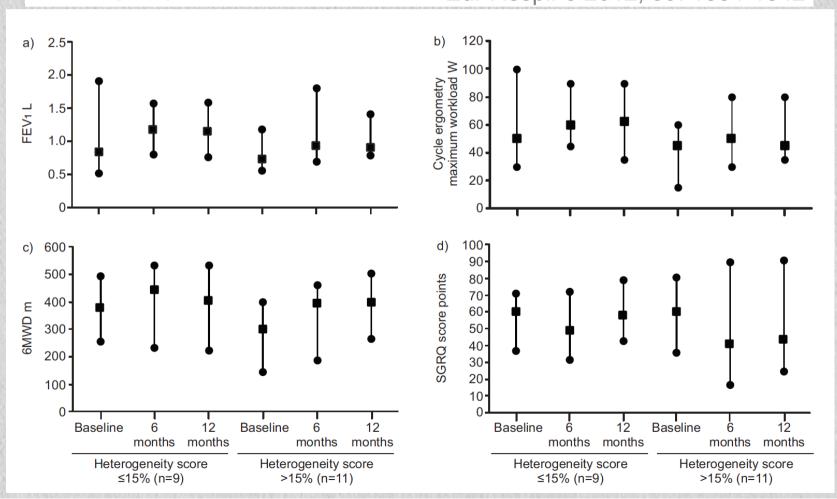
Efficacy predictors of lung volume reduction with Zephyr valves in a European cohort

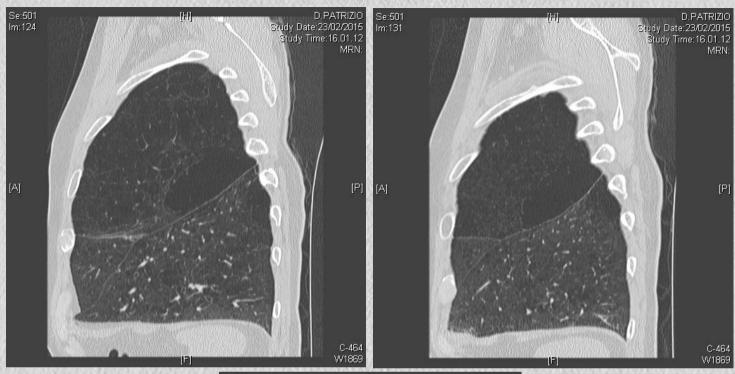
Felix J.F. Herth, Marc Noppen, Arschang Valipour, Sylvie Leroy,
Jean-Michel Vergnon, Joachim H. Ficker, Jim J. Egan, Stefano Gasparini,
Carlos Agusti, Debby Holmes-Higgin and Armin Ernst, on behalf of the International
VENT Study Group

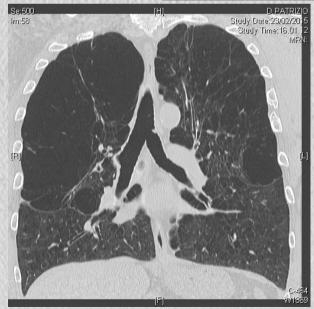
Eur Respir J 2012; 39: 1334-1342

European cohort of VENT Study: 161 pts

111 valves

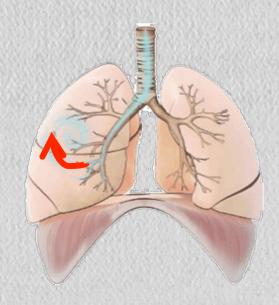

60 control group


	Treatment n = 111	Control n = 60	p value
% Change in FEV ₁	+7.0%	+0.5%	0.067
% Change in cycle erg	+2±14 W	-3±10 W	0.04
Fissure integrity			
FEV ₁	+16.0%		
Lobar occlusion and Fissure integrity			
FEV ₁	+26%		


Efficacy predictors of lung volume reduction with Zephyr valves in a European cohort

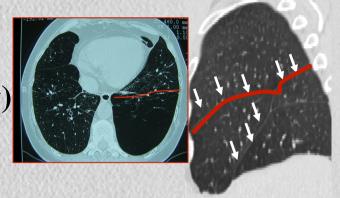
Felix J.F. Herth, Marc Noppen, Arschang Valipour, Sylvie Leroy,
Jean-Michel Vergnon, Joachim H. Ficker, Jim J. Egan, Stefano Gasparini,
Carlos Agusti, Debby Holmes-Higgin and Armin Ernst, on behalf of the International
VENT Study Group

Eur Respir J 2012; 39: 1334-1342

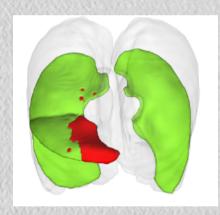


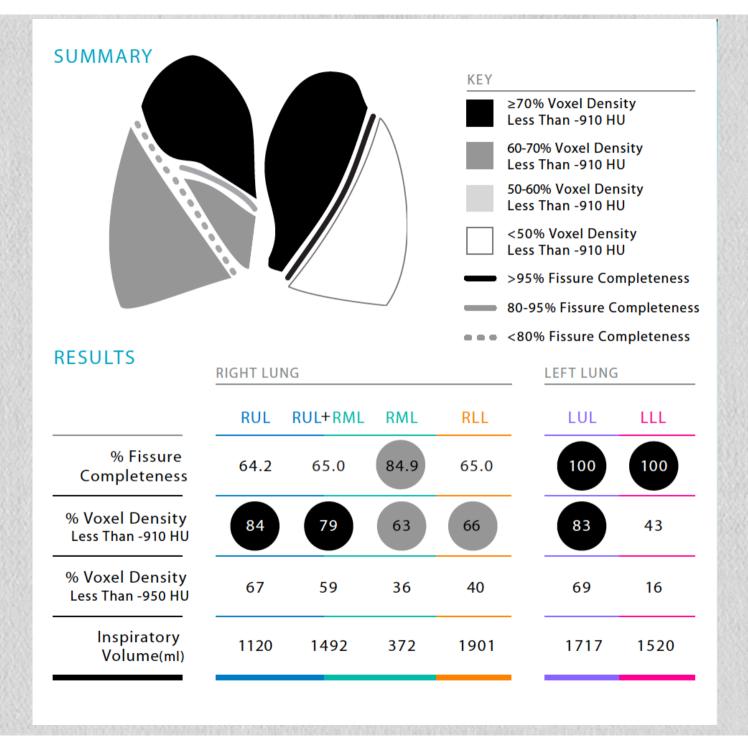
COLLATERAL VENTILATION

All the studies with endobronchial valves emphasized the role of collateral ventilation as main factor affecting outcome

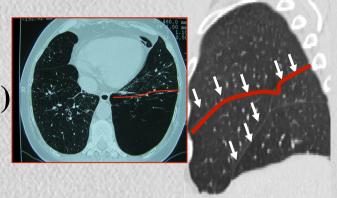

The post hoc analysis of two earlier trials with valves (Vent EU / Vent USA) showed better response rates in pts who had intact fissure

The later trials (BeLieVer Hifi 2015, IMPACT 2016, STELVIO 2015) altered their inclusion criteria to only select pts without collateral ventilation



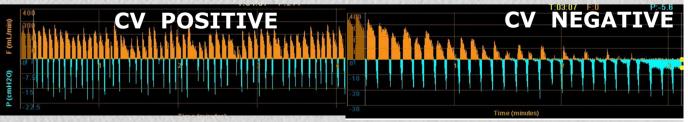

TRICK: HOW TO ASSESS COLLATERAL VENTILATION

1) Visual assessment of interlobar scissures by HRCT (sagittal, axial and coronal view)


2) Quantitative CT and automatic lobar segmentation (software is available)

HOW TO ASSESS COLLATERAL VENTILATION

1) Visual assessment of interlobar scissures by HRCT (sagittal, axial and coronal view)



2) Quantitative CT and automatic lobar segmentation (software is available)

3) Chartis System

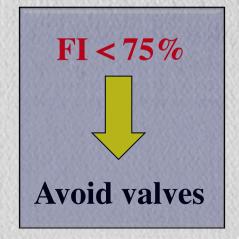
HOW TO ASSESS COLLATERAL VENTILATION HRCT vs Chartis

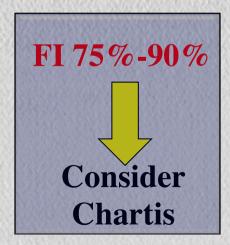
Respiration. 2016;91(6):471-9. doi: 10.1159/000446288. Epub 2016 Jun 1.

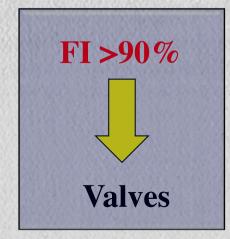
Fissure Integrity and Volume Reduction in Emphysema: A Retrospective Study.

de Oliveira HG¹, de Oliveira SM, Rambo RR, de Macedo Neto AV.

Retrospective analysis of 38 patients:

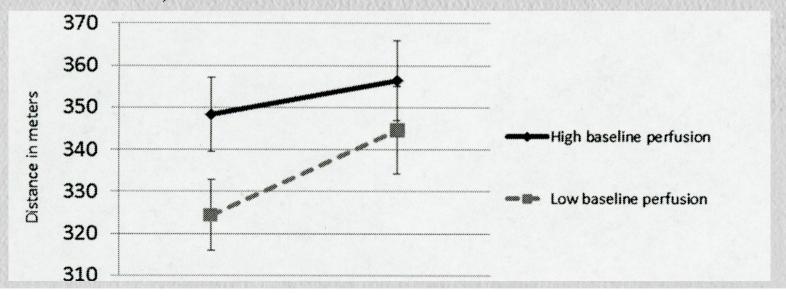

Accuracy of fissure integrity (FI) in predicting volume reduction:


FI 75%-90%: accuracy = 70%

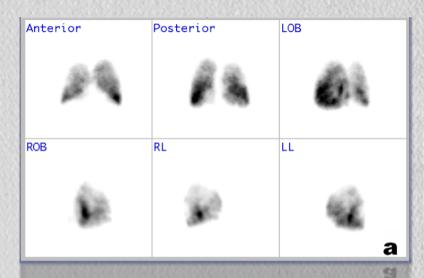

FI >90%: accuracy = 90.5%

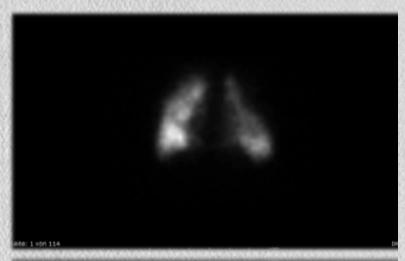
None of the pts with FI < 75% achieved a volume reduction ≥ 350 ml

Suggested algorithm for assessing CV

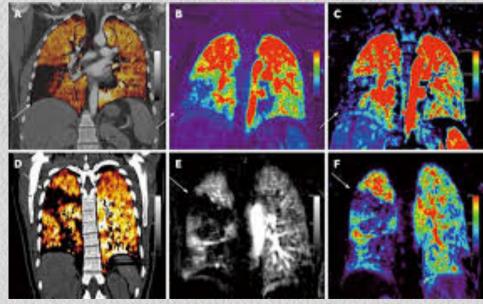

CHEST 2013; 144:1578 Original Research

COPD


Baseline Regional Perfusion Impacts Exercise Response to Endobronchial Valve Therapy in Advanced Pulmonary Emphysema


Rahul G. Argula, MBBS, MPH; Charlie Strange, MD, FCCP; Viswanathan Ramakrishnan, PhD; and Jonathan Goldin, MD, PhD

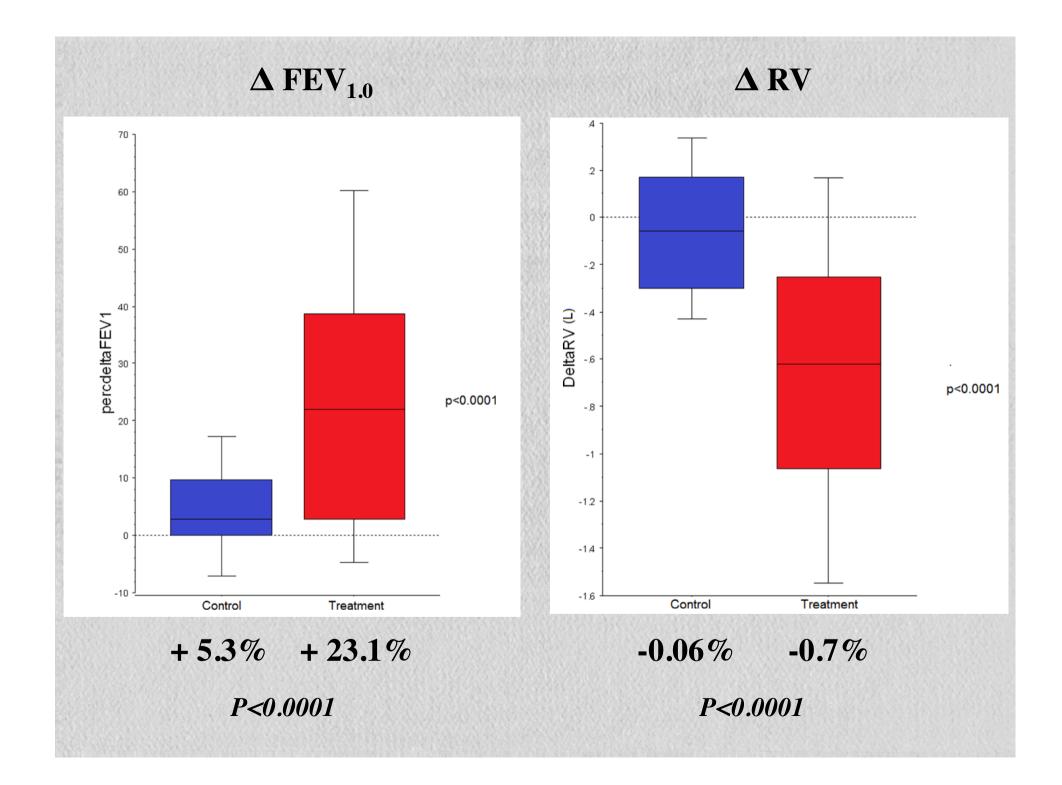
- Retrospective analysis of 169 pts (VENT study) treated with valves
- Pts with a low target lobe regional perfusion: significant improvement in 6mWTD in comparison with pts with high target lobe perfusion (30.24 m vs. 3.72 m)

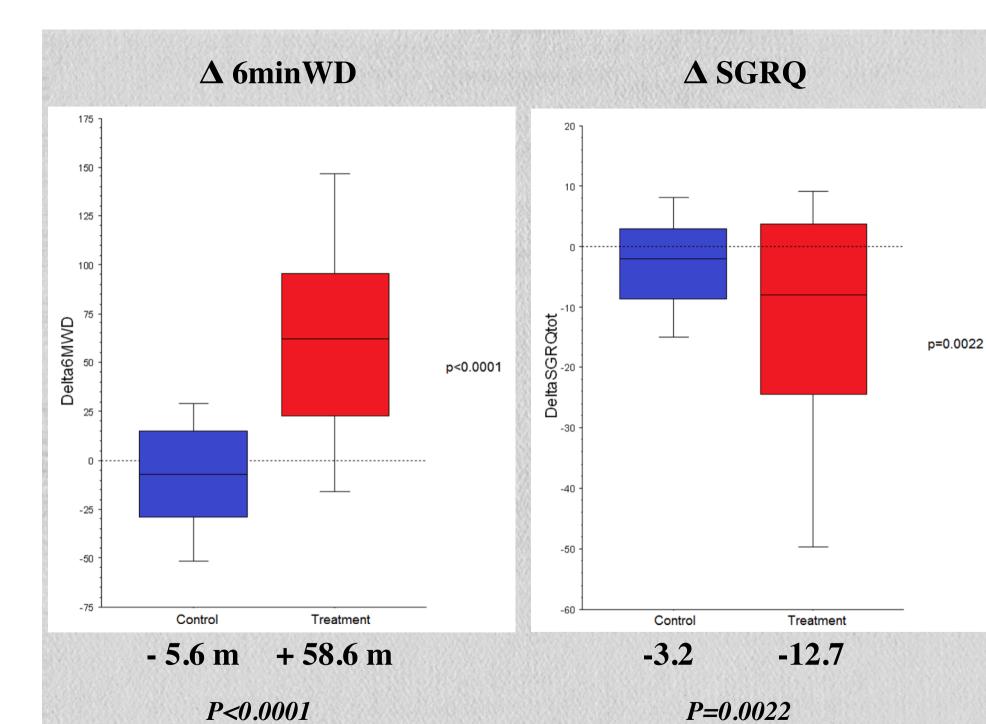


HOW TO ASSESS PERFUSION DISTRIBUTION?

PERFUSION SCINTIGRAPHY

CT DUAL ENERGY

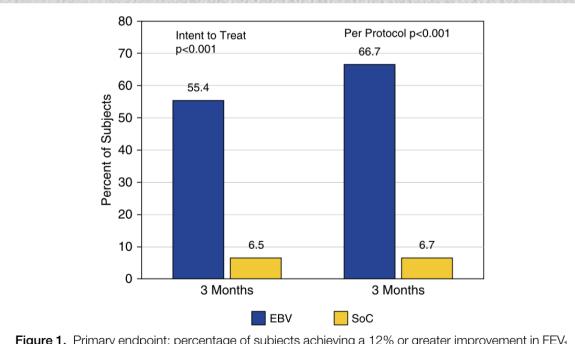

BMJ Open Respiratory Research


Endobronchial valves for emphysema: an individual patient-level reanalysis of randomised controlled trials

2017

Karin Klooster,¹ Dirk-Jan Slebos,¹ Zaid Zoumot,² Claire Davey,³ Pallav L Shah,³ Nicholas S Hopkinson³

- Analysis of two randomized trials in pts with heterogeneous emphysema and absence of collateral ventilation
- Data from Stelvio trial and BelieVeR-HIFi study
- 114 pts evaluated



A Multicenter Randomized Controlled Trial of Zephyr Endobronchial Valve Treatment in Heterogeneous Emphysema (TRANSFORM)

Kemp SV et al.

Am J Respir Crit Care Med 2017; 196: 1535-1543

- Prospective, multicenter 2:1 randomized controlled trial
- EBV plus standard of care vs. standard of care alone
- 97 patients (65 EBV; 32 SoC) with heterogeneous emphysema
- Primary outcome at 3 months: percentage of subjects with FEV1.0 improvement from baseline of 12% or greater

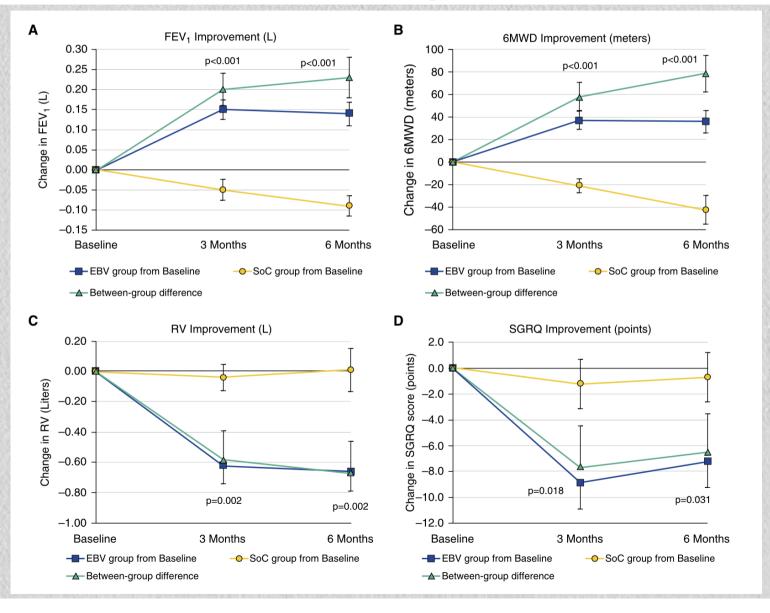


Figure 1. Primary endpoint: percentage of subjects achieving a 12% or greater improvement in FEV_1 (liters) at 3 months. EBV = Zephyr endobronchial valve; SoC = standard of care only.

A Multicenter Randomized Controlled Trial of Zephyr Endobronchial Valve Treatment in Heterogeneous Emphysema (TRANSFORM)

Kemp SV et al.

Am J Respir Crit Care Med 2017; 196: 1535-1543

Endobronchial Valve Therapy in Patients with Homogeneous Emphysema

Results from the IMPACT Study

AJRCCM 2016; 194;1073-1082

Arschang Valipour¹, Dirk-Jan Slebos², Felix Herth³, Kaid Darwiche⁴, Manfred Wagner⁵, Joachim H. Ficker⁵, Christoph Petermann⁶, Ralf-Harto Hubner⁷, Franz Stanzel⁸, and Ralf Eberhardt³; for the IMPACT Study Team*

- To evaluate the efficacy of EBV in pts with homogeneous emphysema with absence of collateral ventilation
- Prospective multicenter randomized trial (EBV vs standard care)
- 93 pts: 43 EBV vs 50 standard care

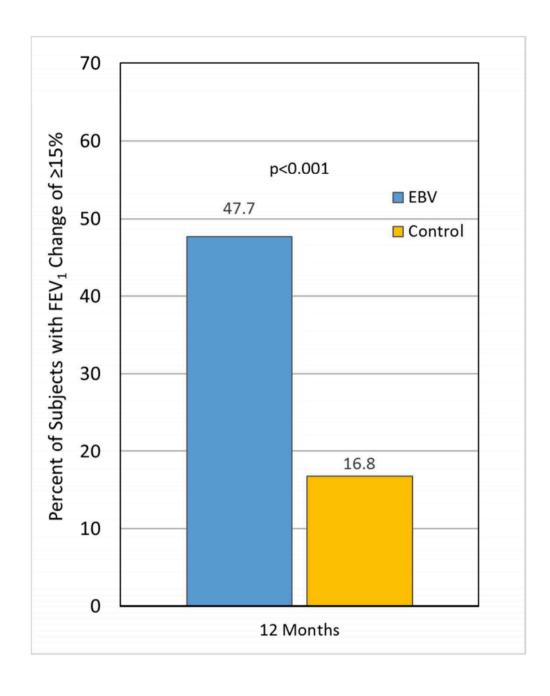
•
$$\Delta \text{ FEV}_{10} = +17\%$$

•
$$\Delta$$
 6mWD = + 40 m

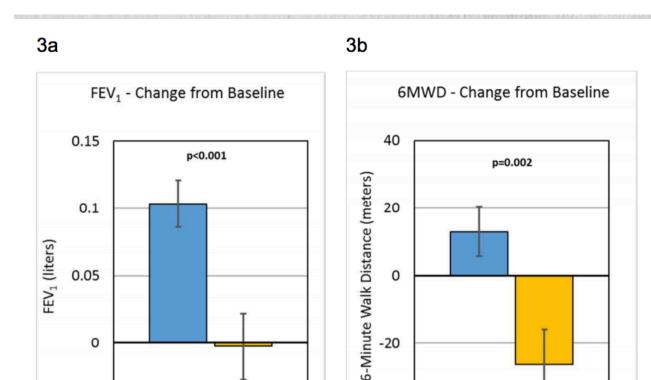
•
$$\Delta$$
 SGRQ = - 9.6

CONCLUSIONS:

EBV in patients with homogeneous emphysema without collateral ventilation results in clinically meaningful benefits of improved lung function, exercise tolerance and quality of life

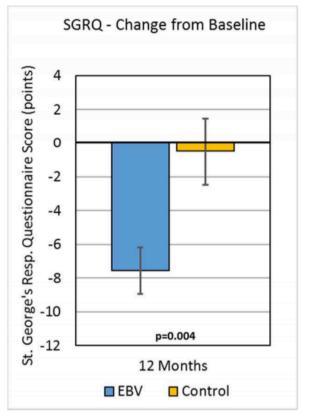

A Multicenter RCT of Zephyr® Endobronchial Valve Treatment in Heterogeneous Emphysema (LIBERATE)

Criner GJ et al. Am J Respir Crit Care Med 2018; 198:1151-1164



- Randomized study: valves vs best standard of care
- Heterogeneous emphysema with little to no collateral ventilation
- Primary endopoint at 12 months: number of subjects with FEV1.0 improvement > 15%
- Secondary endpoints: change in FEV1.0, 6 min WD, SGRQ score
- 190 pts: 128 valves62 control

Percent of Subjects with FEV₁ Change from Baseline to 12-months of ≥15%.


-40

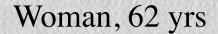
0

-0.05

12 Months

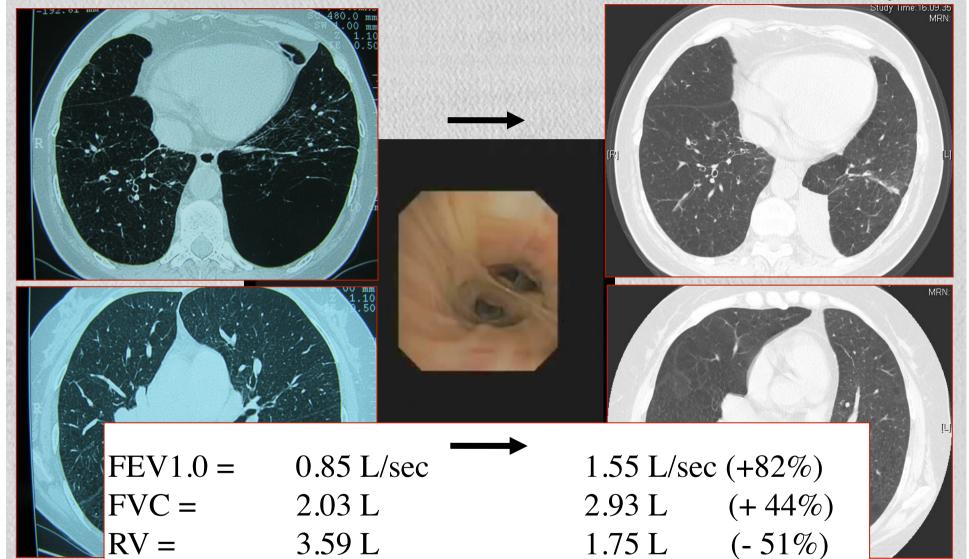
■ EBV □ Control

3c


CONCLUSIONS

■ EBV

12 Months


□ Control

Zephyr EBV provides clinically meaningful benefits in lung function, exercise tolerance, dyspnea and quality of life out to at least 12-months, with an acceptable safety profile in patients with little or no collateral ventilation in the target lobe.

PRE BLVR

POST BLVR (30 days)

6 minWT = 250 m

490 m (+ 96%)

COMPLICATIONS

Pneumothorax: 29%

COPD Exacerbation: 19%

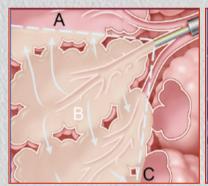
Pneumonia: 4.7%

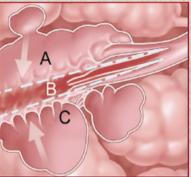
VALVES: EVIDENCE

- Widely evaluated devices
- No comparative studies on models of valve (but majority of studies with Zephir valves)
- Easily removable
- Can be used also for lower lobe predominant emphysema
- Best results are correlated with:
 - no collateral ventilation (fissure integrity/Chartis)
 - low target lobe regional perfusion
 - development of anatomic atelectasis (true volume reduction)
- Pts with homog. emphysema may have benefit? Some evidence
- Collateral ventilation is a major problem that limits the use of this device

BRONCHOSCOPIC TREATMENT OF EMPHYSEMA

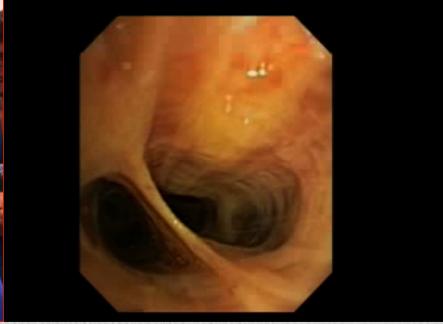
1. Bronchial blockers devices

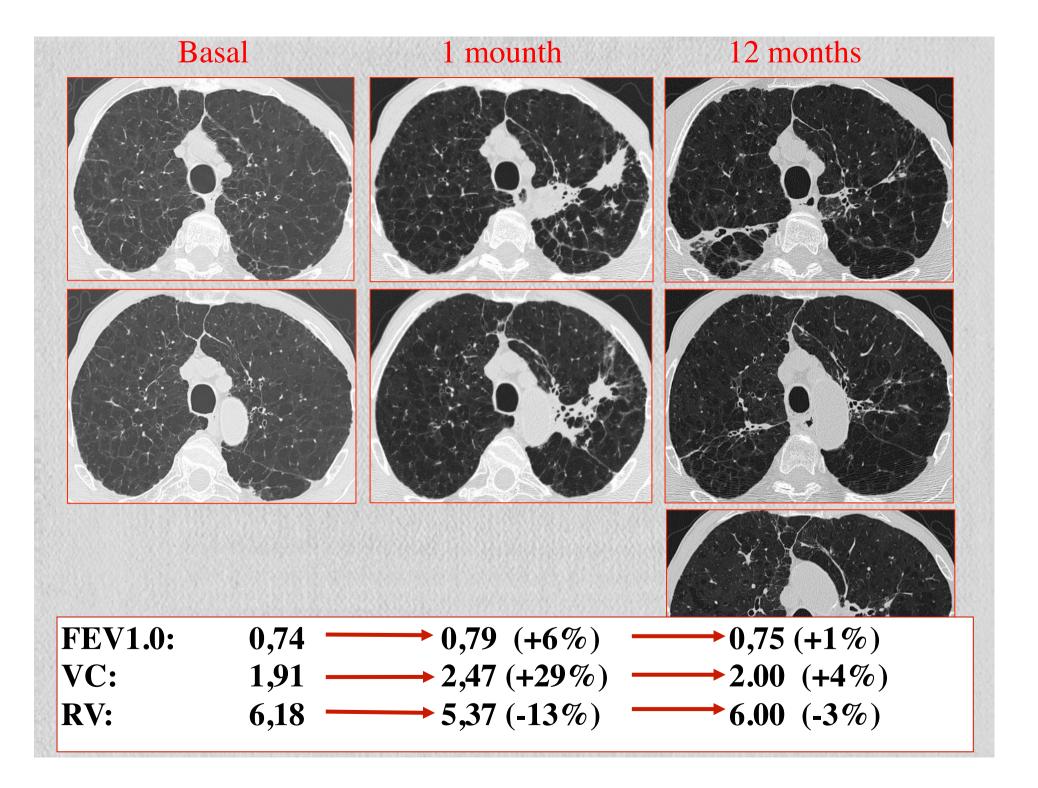

Valves


- IBV
- Zephyr
- 2. Devices that works on lung parenchima

Sealants Coils Steam

Polymeric Lung Volume Reduction AERISEAL SYSTEM





Sealant: Polymeric Lung Volume Reduction Evidence

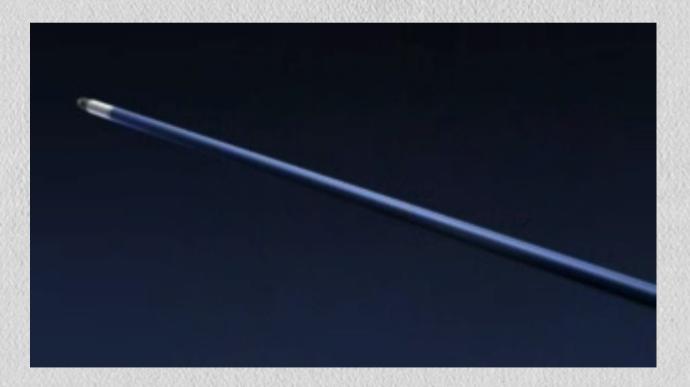
- Published data: only 47 pts (!!)
- Better results in less severe patients (GOLD III)
- Not influence by collateral ventilation
- Easy to perform Irreversible
- Not indicated if large bullae (>5cm)
- No indication for lower lobe emphysema
- Homegeneous emphysema? (data just on 10 pts)
- Long term efficacy?
- Safety (COPDE: 15-40%; pneumonia:10-12%)
- High scattering of results (high SD, greater than mean)

All the studies on Sealant have been terminated on November 13, 2013!!!!!

BRONCHOSCOPIC TREATMENT OF EMPHYSEMA

1. Bronchial blockers devices

Valves


- IBV
- Zephyr
- 2. Devices that works on lung parenchima

Sealants Coils Steam

COILS

MAN, 67 yrs

FEV1.0 (L/sec): $0.46 \longrightarrow 0.79 (+41\%)$

RV (L): $7,620 \longrightarrow 5,340 \ (-29 \%)$

6mWT (m): $90 \longrightarrow 120 (+25\%)$

Endobronchial coils for the treatment of severe emphysema with hyperinflation (RESET): a randomised controlled trial

Dr Pallav L Shah MD a b MD a, Zaid Zoumot MBBS a b, Suveer Singh PhD b, Stephen R Bicknell MD ⊆, Ewen T Ross MD ⊆, John Quiring PhD d, Nicholas S Hopkinson PhD a, Samuel V Kemp MBBS a b, for the RESET trial Study Group

The Lancet Respiratory Medicine, 2013; 3: 233-240

Randomised study

47 patients (heterogeneous and homogeneous) (RV>220%):

- BLVR with coils (23 pts; 21 bilateral)
- Best medical treatment (24 pts)

Between-group difference in change from baseline:

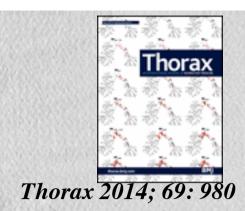
SGRQ: = -8.36

6 minWT: = 63 m (p<0.001)

FEV1.0 = 10.6%RV(L) = -0.31

No between-group difference in serious adverse events

Exacerbation 2 (5%)


Lower respiratory tract infections: 2 (5%)

Pneumothorax: 2 (5%)

ORIGINAL ARTICLE

Lung volume reduction coil treatment for patients with severe emphysema: a European multicentre trial

Gaëtan Deslee, ¹ Karin Klooster, ² Martin Hetzel, ³ Franz Stanzel, ⁴ Romain Kessler, ⁵ Charles-Hugo Marquette, ⁶ Christian Witt, ⁷ Stefan Blaas, ⁸ Wolfgang Gesierich, ⁹ Felix J F Herth, ¹⁰ Juergen Hetzel, ¹¹ Eva M van Rikxoort, ¹² Dirk-Jan Slebos²

•Prospective multicenter trial (11 Centers)

•60 patients (55 treated bilaterally; 5 treated unilaterally) (upper or lower lobe predominant heterogeneous emphysema) (RV>175% of predicted) (10 coils per lobe; range: 5-15)

Variable	6 months	12 months
FEV1.0 (% change)	+15.36	+16.04
RV (% change)	-11.31	-13.75
6minWD (m)	+29.7	+51.4
SGRQ	-12.1	-11.1

Lung Volume Reduction Coil Treatment vs Usual Care in Patients With Severe Emphysema The REVOLENS Randomized Clinical Trial

Gaëtan Deslée et al. JAMA 2016; 315: 175-184

Multicenter 1:1 randomized superiority trial comparing coils with usual care at 10 university hospitals in France

10 coils per lobe were placed in 2 bilateral lobes in 2 procedures

100 patients, (mean age, 62 years) were included

Results (mean between group differencies):

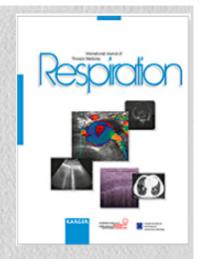
6 months - 6mWD: + 21 m

FEV1.0: +90 ml

sGRQ: - 13.4

12 months - 6mWD: + 21 m

FEV1.0: + 80 ml


sGRQ: - 10.6

Lung Volume Reduction Coil Treatment in Chronic Obstructive Pulmonary Disease Patients with Homogeneous Emphysema: A Prospective Feasibility Trial

Klooster K. · ten Hacken N.H.T. · Franz I. · Kerstjens H.A.M. · van Rikxoort E.M. · Slebos D.-J.

Respiration (DOI:10.1159/000362522)

Respiration 2014; 88: 116

Prospective feasibility study 10 patients (homogeneous emphysema) Bilateral treatment (median: 11 coils in each lung)

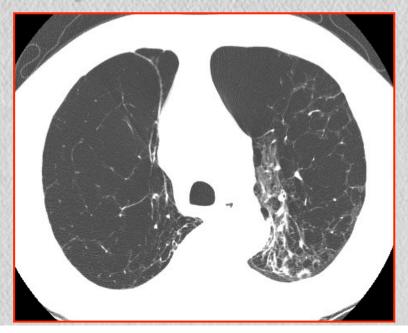
Results at 6 months:

SGRQ: $63 \longrightarrow 48 \text{ (p=0.028)}$

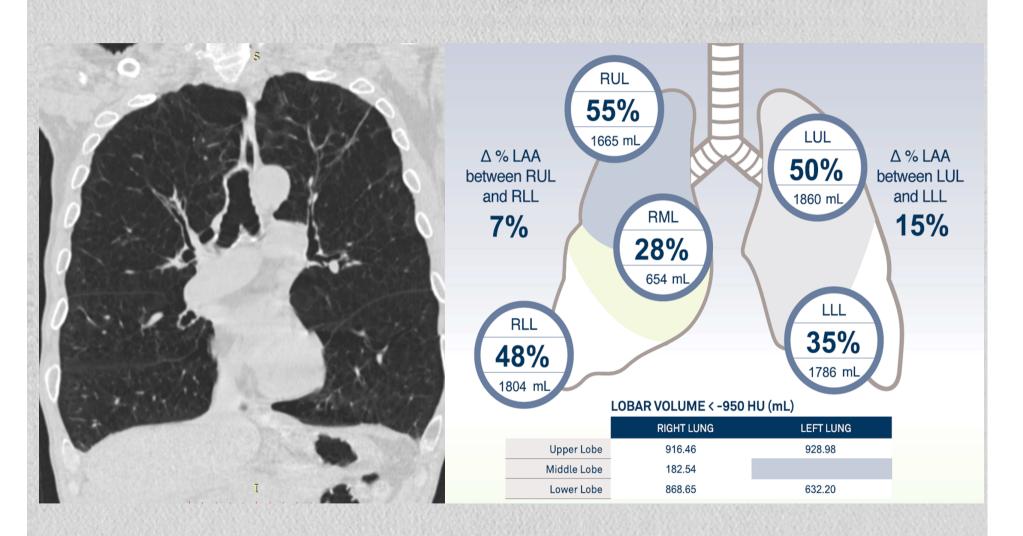
6 minWD (m): $289 \longrightarrow 350 \text{ (p=0.005)}$

FVC (L): $2.17 \longrightarrow 2.55 (p=0.047)$

RV(L): $5.04 \longrightarrow 4.44 \ (p=0.007)$


Serious adverse events:

COPD exacerbation:


Small pneumothorax: 1

Coils: Evidence

- Acts at alveolar rather than the airway level
- Not influenced by collateral ventilation
- Effective also in lower lobe emphysema
- Homogeneous emphysema (?)
- Irreversible?
- Not indicated if lung is too destroyed (Coils need tissue)

Quantitative analysis Low Attenuation Area%

Limit for treatment: Low Attenuation Area > 70 %

BRONCHOSCOPIC TREATMENT OF EMPHYSEMA

1. Bronchial blockers devices

Valves

- IBV
- Zephyr

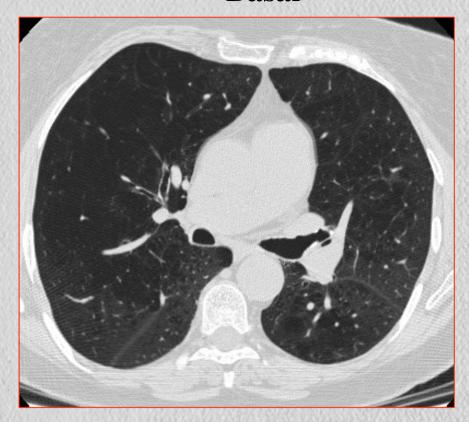
2. Devices that works on lung parenchima

Sealants Coils Steam

Steam

Regional collapse with steam

Segmental volume reduction using thermal vapour ablation in patients with severe emphysema: 6-month results of the multicentre, parallel-group, open-label, randomised controlled STEP-UP trial Lancet Respir Med 2016


Felix J F Herth, Arschang Valipour, Pallav L Shah, Ralf Eberhardt, Christian Grah, Jim Egan, Joachim H Ficker, Manfred Wagner, Christian Witt, Uta Liebers, Peter Hopkins, Wolfgang Gesierich, Martin Phillips, Franz Stanzel, William H McNulty, Christoph Petermann, Greg Snell, Daniela Gompelmann

	Bronchoscopic vapour ablation group		Control group		Difference between groups (95% CI)	p value	
	Patients, n	Mean (SD)	Patients, n	Mean (SD)			
FEV ₁ , %							
3 months*	43	8.2% (17.5%)	22	-1.8% (10.1%)	10·1% (3·2 to 16·9)	0.0047	
6 months	41	11.0% (16.2%)	23	-3.7% (11.1%)	14·7% (7·8 to 21·5)	<0.0001	
SGRQ-C, points							
3 months*	44	-7·2 (12·2%)	22	-0.6 (11.0)	-6·6 (-12·4 to -0·9)	0.0243	
6 months	42	-9.7 (14.4)	23	-0.0 (9.8)	-9·7 (-15·7 to -3·7)	0.0021	

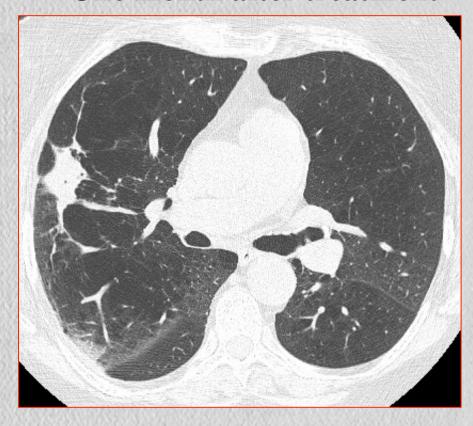

FEV₁=forced expiratory volume in 1 s. SGRQ=St George's Respiratory Questionnaire.*3-month data were collected before the second treatment session was administered.

Table 3: Results for primary efficacy endpoints

Basal

One month after treatment

FEV1.0 = 0.87 L/sec

6 minWT = 240 m

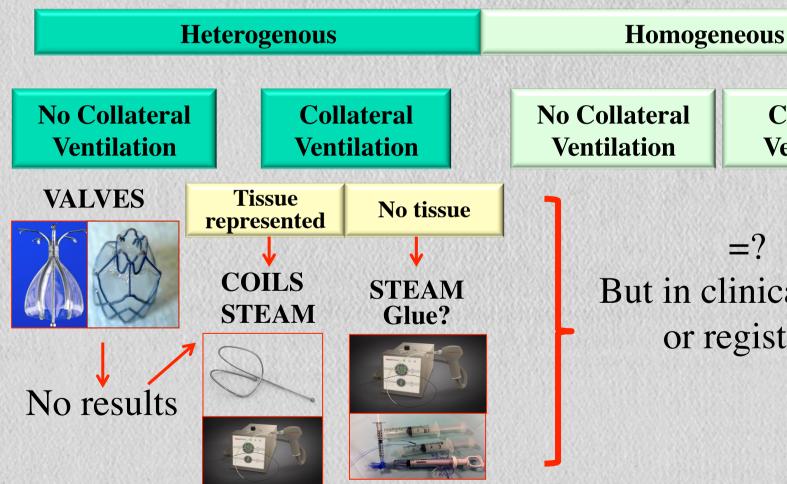
1.02 L/sec (+17%)

280 m (+16.6%)

HOW TO PERSONALIZE APPROACH FOR ELVR

Emphysema optimal medical RX FEV1<50% and RV>175%, RV/TLC>0.58, 6MWT 150-400m

CT Features


GRADE OF HYPERINFLATION (RV%pred)

Study	VENT USA	VENT EUR	IMPACT valves	STELVIO valves	BeLieVeR valves	REVOLENS coils	RENEW coils	RESET coils	TRANSF ORM valves
Inclusion criteria	>150	>150	>200	>150	>150	>220	>225	NA	≥180
Study pop. mean RV	216	240	277	216	219	271	246	236	249

HOW TO PERSONALIZE APPROACH FOR ELVR

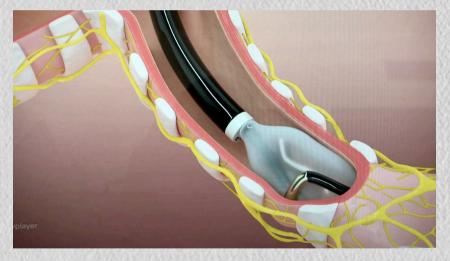
Emphysema optimal medical RX FEV1<50% and RV>175%, RV/TLC>0.58, 6MWT 150-400m

CT Features

Collateral **Ventilation**

=? But in clinical trials or registers

Herth FJF et al. Respiration, 2016 (modified)


And for non-hyperinflated patients?

TARGETED LUNG DENERVATION

A radio-frequency-energy releasing system designed to disrupt parasympathetic pulmonary nerves surrounding the main bronchi.

Purposes: decreasing the release of acetylcholine in the airways, resulting in a permanent anti-cholinergic effect

- Relaxation of airways
- Decrease in mucus production
- Decrease in airway wall inflammation

Targeted lung denervation for moderate to severe COPD: a pilot study Slebos DJ et al. Thorax 2015; 70: 411

22 patients (FEV1.0: 30%-60% pred) Improvement in FEV1.0 > 15% after ipratropium

Results at 1 year

15 W energy:

FEV1.0 = +0.02%

Cycle endurance: + 2.6 min

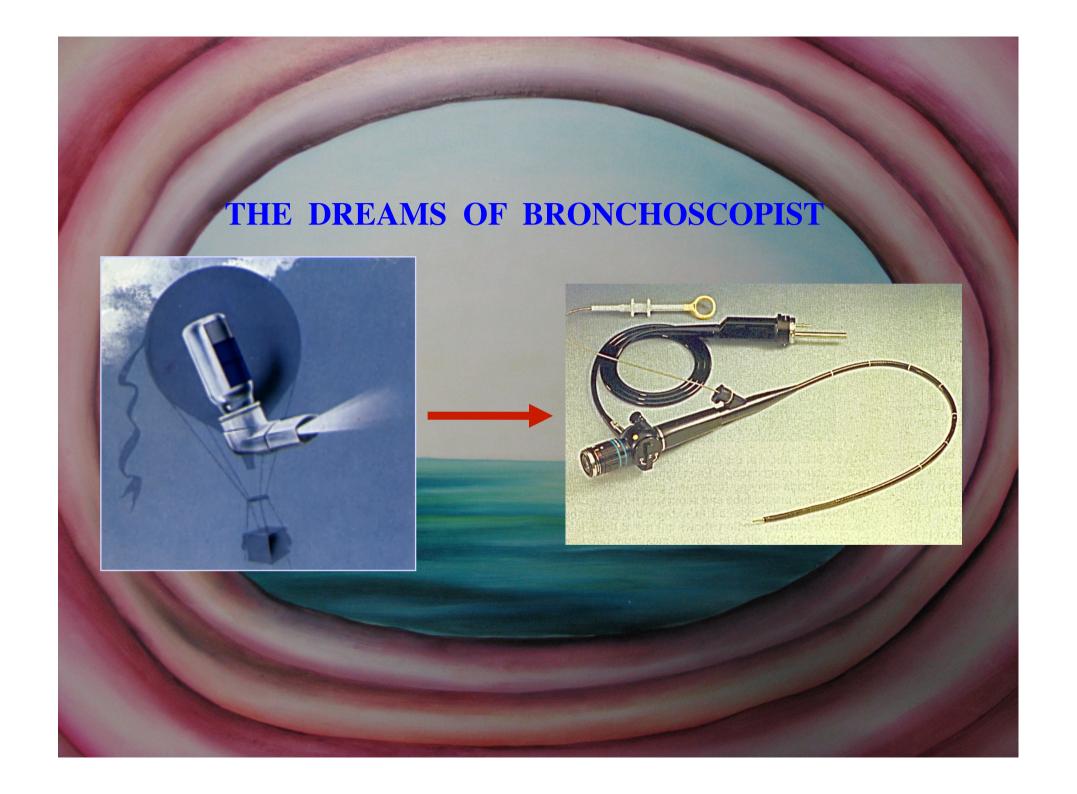
SGRQ: - 0.9 points

20 W energy:

FEV1.0 = + 11.6%

Cycle endurance: + 6.8 min

SGRQ: - 11.1 points


The first randomized sham controlled trial assessing this technology is currently underway (ClinicalTrials.gov identifier: NCT02058459)


Liquid nitrogen metered cryospray

Liquid Nitrogen Metered Cryospray(Rejuvenair System) is a method designed to bronchoscopically deliver liquid nitrogen to the central airways in such a way that is leads to a cryoablation depth of 0.1 to 0.5 mm for the treatment of chronic bronchitis.

This treatment is intended to induce a regenerative airway tissue healing effect, by initially destroying the hyperplastic goblet cells and excess submucous glands by cryo necrosis. After treatment rapid rejuvenation of normal epithelium occurs.

The first in human trials testing this system and its hypothesis are currently underway (NCT02106143, NCT02483052, and NCT02483637)

